26793); the calibrated age of this sample, 2340±140 yr (Stuiver & Becker 1986: 897), is within 2σ of the radiocarbon dates of the cation-ratios, which were measured before the radiocarbon age of the charcoal was determined.

In sum, the radiocarbon dates from Clay Creek and from site 5LA5998 suggest the rectangular basswood and petroglyphs were made around 2300 BP, exactly the age established by CR.

Other radiocarbon dates for cultural deposits near petroglyph sites also confirm the CR dates. Site 5LA5255 the radiocarbon age estimate or the upper cultural level, including ceramics hat throughout the region are the products of Upper Paleo groups, is 370±60 BP. The 14C date verifies the CR age of the petroglyphs at the site; furthermore, as discussed above, these petroglyphs are suggested, through independent means, to be made by the Apache.

Another important site, on the Purgatoire River canyon rim is the Zookerkee site, 5LA5993, where a single human figure is surrounded by 36 animal figures (FIGURE 5). Four dates in the main panel range from 900±150 to 1000±250 BP, and one CR date for a second panel is 1200±150 BP. The Zookerkee site is within 100m of the Point site, 5LA6028, situated on a protruding canyon rim remnant that is slanted from the remainder of the canyon wall. Some seven rooms were constructed on a site by stacking slabs of sandstone in vertical and horizontal tiers. A test excavation into one of the rooms produced chipped stone debitage and charcoal, uncalibrated radiocarbon determination of 1030±90 BP (Beta-27703). The dates of CR overlaps with the 14C date, and dates are again consistent with the chronology suggested by the petroglyphs.

To obtain the 14C date for the Point site, a large number of artifacts were removed from the site and dated. This was done to determine whether the petroglyphs were made at this site. The 14C results did not match the ages obtained from the Point site. The petroglyphs at the site are therefore dated to a different time period.

Conclusion
The CR dating worked very well for PCMS petroglyphs. The CR dates are consistent with the 14C analysis at the site. The cost of CR dating is about one quarter of the 14C analysis of the accelerator. For those trying to date petroglyphs or other rock engravings, the success of CR in the PCMS is encouraging. The method should be employed more widely, especially where there is opportunity for a secondary cross check of its accuracy. The best approach to dating petroglyphs is a combination of accelerator 14C dates and CR dates together with all the relative schemes that can be devised.

Acknowledgments: The strong support of Tom Warren, US Army, and Steve Chomko at Mary Barber, US National Park Service; and the assistance of Kerry Hackett, is appreciated.

References